Phosphorus sorption potential of natural adsorbent materials from a Brazil semiarid region to control eutrophication - (2021)
Acessos: 36
Fernanda Monicelli, Karina Patrícia Vieira da Cunha, Fabiana Araújo, Vanessa Becker
Volume: 33 - Issue: 0
Abstract.
Abstract: Aim The aim of the present study was to evaluate the potential soluble reactive phosphorus (SRP) sorption of three natural P adsorbents (Luvisol, Planosol, and Scheelite tailing) from Brazil’s semiarid region. Methods The adsorption tests were done under pH 8 conditions with the natural adsorbents and Lanthanum-Modified Bentonite (LMB). The effect of humic substances on SRP sorption was also tested. For this, Luvisol and Planosol were incinerated to reduce their humic components, and new adsorption tests were done. The effect of adsorbents on water pH was also evaluated. Results The SRP sorption potential of the natural adsorbents was high at pH 8. Of the natural adsorbents, Luvisol achieved the highest maximum SRP adsorption capacity (Q) of 17.5 mg g-1, followed by Scheelite tailing (8.3 mg g-1) and Planosol (7.7 mg g-1). Scheelite tailing, Planosol and LMB increased the pH of the water. After treatment to reduce humic substances, Planosol showed a Q of 22.3 mg g-1 while Luvisol produced 11.1mg g-1. Reducing the amount of humic substances potentiated the sorption process in the Planosol. However, the isotherms of untreated Luvisol and treated Planosol have not reached equilibrium and therefore may be overestimated. Conclusions The precipitation process was probably the main sorption mechanism, being more expressive than adsorption. Scheelite tailing was the most promising material for eutrophic environments because it is alkaline, calcium-rich, and this capacity will probably remain high under anoxic conditions. It also has a small amount of organic matter and, consequently, contains less humic substances. The quality of the clay present in natural adsorbents was more important than quantity in the sorption process.
Keywords: adsorption tests, clay minerals, humic substances, Langmuir isoterm, mitigation
Language(s): English
Language(s): 2024-10-19 22:30:49
http://www.scielo.br/scielo.php?script=sci_arttext&pid=S2179-975X2021000100724&tlng=en